

Feb 19-8:47 AM

Class QZ ${ }^{11} \mu \quad \sigma \quad$ Drawing, labeling, shading, Given $N_{n}(120,10)$ and foll TI-Cowmand 1) Find $P(x<140)$ Prob. needed.
$=$ normalcdf($-E 99,140,120,10)$

$$
=.977
$$

2) Sind $x=P_{90}$, Round to whole \#.

Nov 28-9:37 AM

Given the confidence interval $.186<p<.286$

1) Margin of error $E=\frac{.886-.186}{2}=\frac{.1}{2}=.05$
2) Point-estimate $\hat{p}=\frac{.286+.186}{2}=\frac{.472}{2}=.236$

In a survey of 450 students, 72% of them were
fully vaccinated for covid -19.

1) How many of them were fully vaccinated? $n=450$
$\hat{p}=.72 \Rightarrow x=n \hat{p}=450(.72)=324$ $\hat{p}=.72 \Rightarrow x=$ if decimal \rightarrow Round- $-p$
2) Find confidence interval for the prop. of all
students that are fully vaccinated.

$$
\begin{aligned}
& \text { No } \text { c-level } \Rightarrow \text { use } .95 \\
& x=324, n=450, c \text {-leave !.95 we are } 95 \% \\
& E=\frac{.701-.679}{2}=.041 \approx 4 \% \text { confident that } \\
& \hat{P}=\frac{761+.679}{2}=.72 \quad=72 \% \quad \begin{array}{l}
76 \% \text { of all students } \\
\text { are Sully vaciund d }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Among } 750 \text { voters } 312 \text { of them were in Support } \\
& \text { of tougher un Laws. } \begin{array}{l}
n=150 \\
x=312
\end{array} \\
& \text { 1) find the Sample proportion, write in whole } \% \\
& \hat{p}=\frac{x}{n}=\frac{312}{750}=-416 \approx 42 \% \\
& \text { 2) Find } 99 \% \text { Conf. interval for the prop. of all voters } \\
& \text { that Seel the Same. }
\end{aligned}
$$

$$
\begin{aligned}
& \hat{P}=\frac{.462+.370}{2}=.416 \approx 42 \% \text { are in support of } \\
& \text { tougher Gun laws. }
\end{aligned}
$$

Nov 29-8:01 AM

Nov 29-8:14 AM

Nov 29-8:10 AM

Nov 29-9:01 AM

Nov 29-9:13 AM

Class QZ 13:
Drawing, labeling, shading, and full TI command

\qquad

1) Find twice the area to the left of $z=-2.175$.
$2 *$ normand $f(-$ - $99,-2.175,0,1)$

$=.0296$
$\approx .030$
2) Find the area to the right of $t=1.864$ with $d f=14$.

$$
\operatorname{tcdf}(1.864, E 99,14)=.042
$$

$d S=14$

